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The aim of this work is to test the value of the Peng-Robinson-Stryjek-Vera
(PRSV-2) equation of state for predicting the critical behavior of binary
mixtures. A procedure adopted by Heidemann and Khalil, based on the
Helmholtz free energy, has been followed. The resulting two complex nonlinear
equations have been solved simultaneously for the critical temperature and
volume, while the critical pressure is calculated from the PRSV-2 equation of
state itself. Three forms of binary-interaction parameters have been tried: the
zero-type, conventional one-parameter type, and Margules two-parameter type.
The optimum values of the binary interaction parameters, based on minimizing
the sum of the squares of the relative errors between predicted and experimental
critical temperatures, have been calculated for 20 polar and nonpolar systems.
The Margules two-parameter type gives the best results, but its mathematical
derivation is cumbersome and it requires more computation time. The standard
and the average of the absolute relative deviations in critical properties are
included. The predicted critical temperatures and pressures agree well with the
experimental results, and are always better than those predicted by the group-
contribution method. The deviations in the predicted critical volumes using any
of the tested binary-interaction parameter types are relatively large compared to
those using the group-contribution method.

1. INTRODUCTION

Critical properties of fluids or fluid mixtures are important for describing
fluid phase behavior, predicting physical properties, developing equations
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of state, and designing supercritical-fluid extraction processes and compres-
sion and refrigeration units [1]. For commonly used pure substances, these
critical constants have been determined experimentally. Besides direct
measurements, critical properties of mixtures are often estimated on the
basis of various correlating methods. Spencer et al. [2] have reviewed these
methods in terms of their estimation procedure and accuracy. Li and Kiran
[3] divided the bases of the existing correlating methods, available till
1973, into six groups and give references on each of them. These groups are
the (a) graphical approach, (b) equation-of-state approach, (c) excess-
property approach, (d) conformal solution (corresponding-states principle)
approach, (e) thermodynamic-potential approach, and (f) group-contribu-
tion approach.

The prediction of true critical properties of multicomponent systems is
an important aspect of the general problem of predicting the overall phase
behavior of a system. Knowledge of the critical behavior of mixtures is
important to determine the existing phase conditions or permissible operat-
ing ranges in reactors and mass transfer equipment.

Fluid-property predictions and design calculations in the critical
region are often the most difficult to make, and knowledge of the precise
location of the critical point for the system under study is of utmost impor-
tance. Also in the critical region, the vapor-liquid equilibrium calculations
are usually slowly converging. Moreover, the possible occurrence of liquid
formation in a compressor necessitates knowledge of whether a given
mixture is a vapor, a liquid, or a two-phase mixture.

In enhanced oil recovery processes, the amount of carbon dioxide or
intermediate-weight hydrocarbon gas to be added to the recycled separator
gas to achieve first-contact or multicontact miscibility with the oil in the
well can be estimated by calculating the critical composition at a fixed
pressure. Prediction of the critical properties, therefore, is important in
modeling the phase behavior exhibited by these mixtures for the simulation
of such processes [4].

Because at the critical point density differences between phases vanish,
the rate of volume change with respect to pressure becomes infinite, and an
infinitesimal temperature gradient can be responsible for a transition from
100% liquid to 100% vapor; the critical condition is difficult to measure
accurately [5].

Although experimental critical properties are available for commonly
used pure substances and mixtures, experimental investigation of critical
properties of every possible fluid mixture is impractical because of the
limitations in terms of time and cost. Even though experimental data for
some mixtures are available, the data points sometimes may not cover the
entire composition range of interest.
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Evaluation of critical points for multicomponent mixtures based on an
equation of state has attracted considerable attention in recent years. In
this approach the second and third derivatives of the molar free energy
with respect to composition at constant temperature and pressure must be
equal to zero. Determination of the critical properties for mixtures involves
the simultaneous solution of an extended form of these derivatives and an
equation of state. Joffe and Zudkevitch [6] used the Redlich-Kwong equa-
tion of state to predict the critical properties, using a graphical procedure
to solve the two simultaneous equations, and the results of their sample
calculations indicate that critical temperatures calculated by this approach
agree very well with experimental data, but only fair agreement is observed
between predicted and experimental critical volumes and pressures. Spear
et al. [7] also used the Redlich-Kwong equation of state, but they used a
numerical search procedure to carry out the necessary calculations. In
general, qualitative results were obtained for the critical properties of binary
mixtures, with no empirical adjustment of the interaction parameters.

The first general rigorous procedure for direct determination of critical
temperature and pressure was developed by Peng and Robinson [5], who
used a criterion based on the Gibbs free energy. This method has been used
to predict the critical properties of a total of 32 multicomponent mixtures.
Their equation predicts the critical temperature and pressure with an
absolute error of about 1.31 and 1.41 %, respectively, for natural gas mixtures.

Huron [8] and Huron et al. [9] used the Soave-Redlich-Kwong
equation of state and found that the critical points and vapor-liquid equi-
libria are correctly represented if the interaction parameters are used for
binary mixtures consisting of H2S or CO2 and C1 to C10 hydrocarbons.

Heidemann and Khalil [10] developed a method based on the
Helmholtz free energy and used the Soave-Redlich-Kwong equation of
state just to present their method of calculation. To reduce the computa-
tional time involved in that method, Michelsen and Heidemann [11]
described a computational modification applicable to simple, two-constant
cubic equations of state.

Michelsen [12] proposed a method for rapid construction of the com-
plete phase envelope which yields, in addition to the critical point, the
retrograde behavior. He also proposed an alternative approach to that of
Heidemann and Khalil [10] based on Gibbs' criterion which requires only
the first derivative of fugacities with respect to composition.

Teja et al. [13] used the Teja-Patel and the Peng-Robinson equations
of state to predict the critical properties of mixtures using the Heidemann
and Khalil procedure [10]. These two equations gave very similar results
and required similar values of the binary interaction parameters to fit the
critical curves. However, they gave poor predictions of the critical volumes,
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with pure-compound parameters
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especially at high concentrations of fluids whose critical compressibilities
differ from those obtained from the Teja-Patel and the Peng-Robinson
equations of state.

Mainwaring et al. [14] used Deiters' equation of state to calculate the
critical properties of over 50 binary mixtures and used the Guggenheim
equation for comparison purposes. They found that Deiters' equation gives
good results for mixtures of moderately different size molecules, whereas
Guggenheim's equation is superior for dissimilar size molecules.

Garcia-Sanchez et al. [15] used the simplified perturbed hard-chain-
theory equation of state to analyze its ability for the prediction of the criti-
cal points of reservoir fluids using the procedure of Heidemann and Khalil
[10]. The performance of this equation was demonstrated for four oil
reservoir fluid systems containing up to 48 components.

The Heidemann-Khalil method [10], compared to the Peng-Robin-
son rigorous method [5], is far superior: it is much more efficient, requires
less computational effort, and does not need the evaluation of a very large
number of high-order determinants. Also, the partial derivatives required
using the Helmholtz free energy concept are much more rapidly evaluated
than those using the Gibbs free energy concept [11].

2. APPLICATION OF THE HEIDEMANN-KHALIL APPROACH TO
THE PRSV-2 EQUATION OF STATE

The Peng-Robinson-Stryjek-Vera (PRSV-2) equation of state has
been successfully used for vapor-liquid equilibrium calculations over a
wide range of temperatures and yields a good representation of the satura-
tion pressure of pure compounds even at low reduced temperatures [16,
17]. Therefore, the PRSV-2 equation of state has been chosen here to test
its ability to predict the critical properties of binary mixtures following the
Heidemann and Khalil approach [10]. The Peng-Robinson equation of
state in its modified form is given by



Critical Properties of Binary Mixtures 243

The pure-compound critical properties (Pc, Tc, W) and the pure-compo-
nent parameters K1, K2, and K3 have been taken from Stryjek and Vera
[16, 17] and Proust and Vera [18]. For mixtures, the following mixing
rules have been applied:

and

For the cross parameter, aij , the following expressions have been used.

(a) Zero-interaction parameter form:

(b) Conventional one-binary interaction parameter form:

(c) Margules-type two-binary interaction parameter form:

where kij is the binary interaction parameter between component i and
component j. The optimized values of kij for all the studied systems are
listed in Appendix B. The optimization procedure is based on the mini-
mization of the sum of the squares of the relative errors in the critical
temperature for a given set of data.

In terms of the compressibility factor, Z, Eq. (1) becomes

where A = aP/(RT)2 and B = bP/RT.
Equation (12), as a cubic equation, gives three roots for Z: either all

real or one real and two complex conjugate roots. When applied to
mixtures, the largest positive real root is taken as the value of Z when the
mixture is in the vapor phase, while the smallest positive real root is taken
for Z when the mixture is in the liquid phase. A single positive real root
(or three equal positive real roots) in a given phase means that a pure
component exists.



That is, the first and second partial derivatives of fugacity with respect to
the number of moles of constituents j and k have to be evaluated. The
expressions that have been reached for these derivatives, on the basis of the
PRSV-2 equation of state with conventional mixing rules, are summarized
in Appendix A for reference.

The necessary condition for a point to lie on the limit of stability is
that the matrix Q with elements

and

then the derivative elements in the quadratic and cubic terms in Eq. (14),
at constant P, T, and nj#ni, become

The stability of the test point is assured if the quadratic term in Eq. (14)
is positive-definite, i.e., equals zero. At such a point, the stability is deter-
mined by the properties of the cubic and higher-order terms in Eq. (14). If
we note that

where xi is the mole fraction of component i in the mixture.
If the Helmholtz free energy is expanded around some test point

(T0, V0, n10, n20,...,nNo) according to the approach of Heidemann and
Khalil [10], one gets
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The fugacity of component i as a function of temperature, volume, and
mole numbers derived from the PRSV-2 equation is [19]



Fig. 1. Schematic flowchart for the calculation procedure of the critical properties
of a mixture.
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should have a zero determinant, i.e.,

and the cubic term in Eq. (14) must vanish, i.e.,

The resulting two nonlinear equations, Eqs. (19) and (20), have been
solved simultaneously for the critical temperature and volume. The critical
pressure is then calculated from the PRSV-2 equation of state itself. The
computational procedure described by Heidemann and Khalil [10] is
followed exactly. A flowchart of the calculation procedure is shown in
Fig. 1. For more details see Ref. 19. The experimental critical data used in
this work are those of Hicks and Young [20]. The pure-component
properties have been taken from Stryjek and Vera [16-18]. The data of
Reid et al. [21 ] have been used for the pure-component properties that are
not available in Refs. 16-18.

3. RESULTS AND DISCUSSION

The algorithm described above has been applied to the PRSV-2 equa-
tion of state to predict the critical properties of about 24 binary mixtures.
Among these systems are paraffins, aromatics, alcohols, ethers, hydrogen
sulfide, sulfur dioxide, carbon dioxide, nitrogen, oxygen, hydrogen chloride,
and ammonia. The pure-component properties of the systems studied in
this work are listed in Table AI (Appendix B). The calculated optimum
values of the binary interaction parameters for the systems studied are
listed in Tables All and AIII (Appendix B) for the conventional type and
the Margules type, respectively. The criteria used to compare predicted and
experimental critical properties are the standard deviation (SD) and the
average of the absolute relative deviations (AD) defined below.

where M is the number of points in a given set of data.
It is first noted that all systems studied have continuous critical curves,

and the critical locus of each of these systems exhibits a critical temperature



Fig. 3. Critical temperature versus composition for a butane(l)-ammonia(2)
mixture.

Fig. 2. Critical temperature versus composition for a propane(l)-H2S(2)
mixture.
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that varies monotonically with composition. A point of minimum critical
temperature has been noted on the critical loci of propane-hydrogen
sulfide and butane-ammonia mixtures (see Figs. 2 and 3). This minimum
critical temperature is an indication of the formation of a positive
azeotrope, i.e., an azeotrope with a minimum in its boiling temperature
[22].

Using a conventional one-binary interaction parameter type, we give
in Table I the SD and the AD in critical temperature and pressure for some
nonpolar systems. For the systems listed in Table I, the average value of
the standard deviations is 0.4 K for the critical temperature (with a maxi-
mum of about 1.0 K) and 0.5 bar for the critical pressure (with a maximum
of about 1 bar). Note that the uncertainties in the experimental values are
typically about 0.6 K for the critical temperature and 0.2 bar for the critical
pressure [13]. On the other hand, the average value of AD for the systems
listed in Table I is about 0.1% for the critical temperature (with a maxi-
mum of 0.3%) and about 1.2% for the critical pressure (with a maximum
of 2.2 %). Table I also shows that using a zero-interaction parameter type,
the average values of SD and AD in the critical temperature and pressure
are 1.8 K and 0.4% and 0.6 bar and 1.3%, respectively.

Table I. Standard and Average of the Absolute Relative Deviations in Critical Properties
for Some Nonpolar Mixtures Using the PRSV-2 Equation of State with Conventional

One-Parameter Mixing Rules"

Mixture

Methane-ethane

Hexane-heptane

Hexane-decane

Hexane-cyclohexane

Nonane-cyclohexane

Nitrogen-oxygen

Average for all systems

M SD (K)

8 0.942
1.818

9 0.128
0.227

9 0.895
2.459

9 0.261
2.023

9 0.116
3.383

7 0.259
0.749
0.434
1.788

Tc

AD (%)

0.277
0.564
0.018
0.039
0.121
0.401
0.037
0.354
0.014
0.519
0.145
0.460
0.102
0.397

PC

SD (bar)

1.055
0.962
0.245
0.253
0.706
0.683
0.229
0.360
0.688
0.855
0.215
0.238
0.523
0.559

AD (%)

1.212
1.103
0.779
0.804
0.236
2.219
0.593
0.928
1.927
2.227
0.259
0.187
1.155
1.245

aFirst line: one-parameter type (k12 listed in Table AH). Second line: zero-parameter type
(K l 2 = 0).
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For some polar systems, the SD and AD in critical properties are
shown in Table II on the basis of conventional mixing rules. The average
value of SD in the critical temperature for the systems listed in Table II is
1.2 K (with a maximum of 2.2 K). The average value of SD in the critical
pressure for the last four systems listed in Table II is 4.6 bar (with a maxi-
mum of about 7.3 bar). On the other hand, the average value of AD is
0.2% in the critical temperature (with a maximum of 0.4%) and 5.6% in
the critical pressure (with a maximum of about 8.7%).

The effect of using a two-parameter Margules-type mixing rule on the
predictive capability of the PRSV-2 equation of state has also been studied.
Table III shows a comparison between the calculated SD and AD for
PRSV-2 with Margules two-parameter-type, PRSV-2 with conventional
one-parameter-type, and PRSV-2 with zero-parameter-type rules, and
those of the work of Li and Kiran [3], which are based on the group-con-
tribution method. The method of Li and Kiran does not need experimen-
tally adjusted interaction parameters to predict the critical properties. It is
clear that the prediction of the critical temperature is always much better
on the basis of the PRSV-2 equation of state. Regarding the above-men-
tioned four methods in order, the average values of AD for all systems
listed in Table III are 0.2, 0.3, 1.4, and 1.7% for the critical temperature,
3.1, 2.6, 3.3, and 10.5% for the critical pressure, and 17.1, 16.8, 17.3, and
3.8% for the critical volume. It is evident that the Margules two-
parameter-type rule gives, on the average, slightly better predictions than
the conventional type.

Table II. Standard and Average of the Absolute Relative Deviations in Critical Properties
for Some Polar Mixtures Using the PRSV-2 Equation of State with a Conventional One-

Binary Interaction Parameter"

Tc

Mixture

Acetone-benzene
Hexafluorobenzene-decane
Ethanol-water
Benzene-toluene
Propane-HCl
Benzene-methanol
Butane-Ammonia

Average for all systems

M

6
8
8
9
5
5
6

SD
(K)

1.16
2.15
1.04
0.31
1.10
0.85
1.92
1.22

AD
(%)

0.17
0.33
0.15
0.04
0.24
0.12
0.42
0.21

Pc

SD
(bar)

—
—
—

0.07
4.20
7.26
6.75
4.57

AD
(%)

—
—

0.13
5.66
8.73
7.98
5.62

Vc

SD
(ml.mor-1)

—
—
—
—
—

48.2
32.2
40.2

AD
(%)

—
—
—
—

25.1
23.1
24.1

a Using K12 values listed in Table All.
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Table III. Standard and Average of the Absolute Relative Deviations in Critical Properties
Using the PRSV-2 Equation of State with Different Mixing Rulesa

Mixture

Ethane-H2S

Propane-H2S

Heptane-ethylene

Methanol-1 -butanol

1-Butanol-diethyl ether

SO2-diethyl ether

SO2-methylethyl ether

Average for all system

M

6

1

8

4

4

4

5

is

Tc

SD

(K)

0.24
0.29
8.12

5.91
1.26
1.49
7.81

19.90
2.00
6.69
9.71

15.60
0.27
0.19
1.04

7.38
0.68
0.73
5.24

1.18
0.41
0.42
4.44
9.20
0.96
0.95
9.41
1.48
0.83
1.54
6.54
8.66

AD

(%)

0.06
0.07
2.16
1.49
0.26
0.32
1.87
4.45
0.4
1.10
1.80
2.87

0.03
0.026
0.16
1.03
0.10
0.11

0.83
0.13
0.06
0.07
0.83
1.52
0.17
0.18
1.88
0.24
0.24
0.30
1.36
1.68

PC

SD
(bar)

0.36
0.35
1.56
7.48
1.05

1.65
0.83

18.60
7.04
3.50
5.09
6.19
5.01
5.03
5.15

17.70
0.77
0.81
0.86
1.05
2.77
2.84
3.15
6.65
0.43
0.39
1.30
4.70
2.49

2.08
2.56
8.91

AD
(%)

0.39
0.26
2.14

9.57
1.25
2.32
1.07

23.90
7.74
3.12
5.95
5.34
6.00
6.05
6.16

17.60
1.40
1.52
1.55
1.82
4.17
4.26
4.55
8.59
0.62
0.53
1.71
6.31
3.08
2.58
3.30

10.45

Vc

SD
(ml .mol - 1 )

22.30
16.00
15.91
4.29

20.63
19.76
20.31

6.35

27.60
53.35
56.77
9.85

55.10
57.50
57.43
11.30
63.85
56.37
58.66
13.90
35.35
39.21

38.59
15.10
37.06
30.98
30.90
6.81

37.41
39.02
37.80
9.66

AD

(%)

16.24
11.45
11.97
2.68

13.14
12.28

12.67
3.64

7.41
14.28
15.99
3.37

27.27
28.26
28.22
4.81

20.68
18.41
19.25
3.27

15.42
17.02

16.79
5.60

19.19
16.03
16.00
2.98

17.05
16.82
17.27
3.76

a First line: Margules two-parameter type (Kij listed in Table AIII). Second line: conventional
one-parameter type (k12 listed in Table AII). Third line: zero-parameter type (k12 = 0). Fourth
line: group-contribution method (Li and Kiran work).



On the other hand, the PRSV-2 predictive capability of the critical
volumes is not as good as its predictive capability of the critical tem-
perature and pressure. The group-contribution method [3] is superior in
predicting the critical volume over the PRSV-2 and any other known cubic
equation of state. The poor representation of the mixture critical volumes
by cubic equations of state is well-known and has been widely attributed
to the fact that the pure-component critical compressibility calculated from
the equation of state is, in general, not equal to the experimental com-
pressibility of most fluids [13]. The above statement is confirmed when
one compares the pure-component critical compressibility predicted by the
Peng-Robinson equation of state (0.3074) to the range of the experimental
compressibilities of the pure compounds used in this study (0.224-0.290).

4. CONCLUSIONS

The PRSV-2 equation of state has been used in this work to predict
the critical properties of binary mixtures on the basis of the algorithm
adopted by Heidemann and Khalil [10]. The first and second partial
derivatives of fugacity with respect to the mole numbers of the mixture
constituents have been evaluated and the resulting two nonlinear equations
have been solved simultaneously for the critical temperature and volume.
The critical pressure is then calculated from the PRSV-2 equation of state
itself. A quasi-Newton technique has been used here to calculate the
optimum values of the binary interaction parameters that minimize the
deviations between predicted and experimental critical temperatures. Zero-
type, conventional one-parameter-type, and Margules two-parameter-type
mixing rules have been tested.

The zero-parameter-type represents the actual predictive capability of
the equation of state for the critical properties. The standard and the
average of the absolute relative deviations in the critical temperature are
always larger than those predicted using conventional one-parameter or
Margules two-parameter types, even though these deviations using any of
the three binary-interaction parameter types are comparatively similar.

Both conventional and Margules-type predictions of critical tem-
perature and pressure agree well with the experimental data. The Margules
type, in general, gives the best results, but its mathematical derivation is
cumbersome and it requires more computation time. The deviations in the
predicted critical volume, using any of the three tested binary-interaction
parameter types, are relatively large. Better predictions are always obtained
in both critical temperature and pressure compared to those obtained by
the group-contribution method, which always gives lower deviations in the
predicted critical volume.
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APPENDIX A

Expressions for the First and Second Derivatives of the Fugacity of
Component m with Respect to the Number of Moles of Species l and k

where



where
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where d= 1.0 for m= 1= k, and D= 0 for m #l#k.
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APPENDIX B

Table AI. Pure-Component Properties

Compound

NH3

SO2

HC1
H2S
N2

O2

H2O
Methane

Ethane
Propane

Butane

Hexane

Heptane

Nonane

Decane

Ethylene

Cyclohexane

Benzene
Toluene

Methanol
Ethanol

1-Butanol

Acetone
Diethyl ether

Methylethyl ether

Hexafluorobenzene

T c ( K )

405.6

430.8

324.6

373.2

126.2

154.8

647.3

190.6

305.4

369.8
425.2

507.3
540.1

594.6

617.5

282.4

553.6

562.2
591.8

512.6

513.9

563.0
508.1

466.7

437.8
516.7

PC (kPa)

11289.5

7883.1

8308.6

8940.0

3400.0

5090.0

22089.8

4595.0

4879.8
4249.5

3796.6
3012.4

2735.8

2287.9

2103.5

5035.9
4075.0

4898.0

4106.0

8095.8
6148.0

4412.7

4696.0
3640.0

4410.0

3273.0

CO

0.2517

0.251

0.12606
0.1
0.03726

0.02128

0.3438
0.01045

0.09781

0.15416

0.20096
0.30075

0.35022

0.44517
0.49052

0.085

0.20877

0.20929
0.26323

0.56533

0.64439
0.5902

0.30667
0.281

0.23479

0.3961

K1

0.001

0.03962

0.01989

0.03160

0.01996

0.01512

-0.06635
-0.00159

0.02669
0.03136

0.03443

0.05104

0.04648

0.04104

0.04510

0.04191

0.07023

0.07019
0.03849

-0.16816
-0.03374

0.33431

-0.00888
0.05004

0.16948
0.02752

k2

-0.1265

NA
-0.0036

NA
0.3162

-0.009

0.0199
0.1521

0.1358
0.2757

0.6767
0.8634

0.9331

0.6621

0.8549
NA

0.6146

0.7939
0.5261

-1.34

-2.6846

-1.17431

0.2871
NA

0.0515

0.8172

k3

0.51

NA
0.31

NA
0.535

0.49

0.443
0.517

0.424

0.447
0.461

0.460

0.496

0.519

0.527

NA
0.530

0.523

0.510

0.588
0.592

0.642

0.537
NA

0.768
0.565
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Table AH. Optimized Values of the Conventional
Binary Interaction Parameter, K12

Mixture

Methane-ethane
Ethane-butane
Ethane-heptane
Ethane-H2S
Butane-ammonia
Butane-heptane
Propane-H2S
Propane-HCl
Hexane-heptane
Hexane-decane
Hexane-cyclohexane
Heptane-ethylene
Nonane-cyclohexane
Nitrogen-oxygen
Acetone-benzene
Benzene-methanol
Benzene-toluene
Methanol-1 -butanol
Ethanol-water
1-Butanol-diethyl ether
Hexafluorobenzene-decane
SO2-diethyl ether
SOj-methylethyl ether

K12

0.03161
0.02911
0.08192
0.09365
0.15633
0.03413
0.07710
0.07383
0.00135
0.02080

-0.01629
0.06484

-0.02777
-0.02115

0.01073
0.07671

-0.00752
-0.00900
-0.05187

0.04865
0.08790

-0.03832
-0.08064

Table AIII. Optimized Values of the Margules Two-Binary
Interaction Parameters

Mixture

Ethane-H2S
Propane-H2S
Butane-CO2

Heptane-ethylene
Methanol-1-butanol
1-Butanol-diethyl ether
SO2-diethyl ether
SO2-methylethyl ether

K12

0.098847
-0.027775

0.105994
-0.127265
-0.010793

0.054538
-0.038200
-0.081787

K2I

0.086689
0.100737
0.026026

-0.066530
-0.009189

0.044945
-0.041420
-0.084040



NOMENCLATURE

a Attraction parameter in the Peng-Robinson equation of state
A aP/(RT)2

A Helmholtz free energy
AD Average of the absolute relative deviations defined by Eq. (22)
b Repulsion parameter in the Peng-Robinson equation of state
B bP/RT
C Cubic term defined in Eq. (20)
C Derivative of the cubic term C
Det Determinant
f Fugacity
k Binary interaction parameter
M Number of data points
n Number of moles
N Number of components
P Pressure (bar)
Q Matrix in the quadratic terms defined in Eq. (14)
Q Derivative of the Q matrix
q Elements of the Q matrix defined by Eq. (18)
R Universal gas constant
SD Standard deviation defined by Eq. (21)
T Absolute temperature (K)
V Volume (ml)
v Molar volume (ml . mol -l)
x Mole fraction
Z Compressibility factor

Greek Letters

A Difference in property
e Error tolerance
K Function of reduced temperature and acentric factor, Eq. (5)
K0 Function of acentric factor, Eq. (6)
K l , K 2 , K 3 Pure compound parameters in the PRSV-2 equation of state
O Acentric factor

Subscripts

c Critical property
i, j, k, l, m, n Component number
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m Mixture property
0 Initial state
r Reduced property
T Total property
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